Nanopublication

< Home

ID

https://w3id.org/kpxl/ios/ds/np/RAmJB5YSNX8Vd6O_nUh7C6pDDBkIM0-gEvLBoSQg3sEdQ

Formats

.trig | .trig.txt | .jelly | .jelly.txt | .jsonld | .jsonld.txt | .nq | .nq.txt | .xml | .xml.txt

Content

@prefix this: <https://w3id.org/kpxl/ios/ds/np/RAmJB5YSNX8Vd6O_nUh7C6pDDBkIM0-gEvLBoSQg3sEdQ> .
@prefix sub: <https://w3id.org/kpxl/ios/ds/np/RAmJB5YSNX8Vd6O_nUh7C6pDDBkIM0-gEvLBoSQg3sEdQ/> .
@prefix np: <http://www.nanopub.org/nschema#> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix nt: <https://w3id.org/np/o/ntemplate/> .
@prefix npx: <http://purl.org/nanopub/x/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix orcid: <https://orcid.org/> .
@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

sub:Head {
  this: a np:Nanopublication;
    np:hasAssertion sub:assertion;
    np:hasProvenance sub:provenance;
    np:hasPublicationInfo sub:pubinfo .
}

sub:assertion {
  <http://id.crossref.org/issn/2451-8492> dct:title "Data Science" .
  
  <https://doi.org/10.3233/DS-170004> a <http://purl.org/spar/fabio/PositionPaper>;
    dct:abstract "Symbolic approaches to Artificial Intelligence (AI) represent things within a domain of knowledge through physical symbols, combine symbols into symbol expressions, and manipulate symbols and symbol expressions through inference processes. While a large part of Data Science relies on statistics and applies statistical approaches to AI, there is an increasing potential for successfully applying symbolic approaches as well. Symbolic representations and symbolic inference are close to human cognitive representations and therefore comprehensible and interpretable; they are widely used to represent data and metadata, and their specific semantic content must be taken into account for analysis of such information; and human communication largely relies on symbols, making symbolic representations a crucial part in the analysis of natural language. Here we discuss the role symbolic representations and inference can play in Data Science, highlight the research challenges from the perspective of the data scientist, and argue that symbolic methods should become a crucial component of the data scientists’ toolbox.";
    dct:date "2017-10-17";
    dct:isPartOf <http://id.crossref.org/issn/2451-8492>;
    dct:title "Data Science and symbolic AI: Synergies, challenges and opportunities";
    <http://purl.org/ontology/bibo/issue> "1-2";
    <http://purl.org/ontology/bibo/volume> "1" .
  
  orcid:0000-0001-8149-5890 <http://schema.org/affiliation> <https://ror.org/01q3tbs38>;
    <http://schema.org/email> "robert.hoehndorf@kaust.edu.sa";
    foaf:name "Robert Hoehndorf" .
  
  orcid:0000-0003-0169-8159 <http://schema.org/affiliation> <https://ror.org/02dxx6824>;
    foaf:name "Núria Queralt-Rosinach" .
  
  <https://ror.org/01q3tbs38> foaf:name "Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia" .
  
  <https://ror.org/02dxx6824> foaf:name "Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, USA" .
  
  sub:author-list rdf:_1 orcid:0000-0001-8149-5890 .
  
  sub:author-list__1 rdf:_2 orcid:0000-0003-0169-8159 .
}

sub:provenance {
  sub:assertion prov:wasAttributedTo orcid:0000-0001-8149-5890, orcid:0000-0003-0169-8159 .
}

sub:pubinfo {
  orcid:0000-0001-8149-5890 foaf:name "Robert Hoehndorf" .
  
  orcid:0000-0002-1267-0234 foaf:name "Tobias Kuhn" .
  
  orcid:0000-0003-0169-8159 foaf:name "Núria Queralt-Rosinach" .
  
  this: dct:created "2025-05-05T09:13:17.554Z"^^xsd:dateTime;
    dct:creator orcid:0000-0002-1267-0234;
    dct:license <https://creativecommons.org/licenses/by/4.0/>;
    npx:hasNanopubType <http://purl.org/spar/fabio/ScholarlyWork>, <https://w3id.org/kpxl/ios/ds/terms/DataScienceNanopub>;
    npx:introduces <https://doi.org/10.3233/DS-170004>;
    npx:wasCreatedAt <https://nanodash.knowledgepixels.com/>;
    <http://purl.org/ontology/bibo/authorList> sub:author-list;
    rdfs:label "Article: Data Science and symbolic AI: Synergies, challenges and opportunities";
    nt:wasCreatedFromProvenanceTemplate <https://w3id.org/np/RAekcN47h13fk6ZK4XiObgGgk-qB01sLOjyGyhMCq_jT4>;
    nt:wasCreatedFromPubinfoTemplate <https://w3id.org/np/RA0J4vUn_dekg-U1kK3AOEt02p9mT2WO03uGxLDec1jLw>,
      <https://w3id.org/np/RA16U9Wo30ObhrK1NzH7EsmVRiRtvEuEA_Dfc-u8WkUCA>, <https://w3id.org/np/RA5R_qv3VsZIrDKd8Mr37x3HoKCsKkwN5tJVqgQsKhjTE>,
      <https://w3id.org/np/RAYrlN4s93vVe9LGI-gmPLTb-QZGHKd0mxx8VxJ3XVhuw>, <https://w3id.org/np/RAukAcWHRDlkqxk7H2XNSegc1WnHI569INvNr-xdptDGI>;
    nt:wasCreatedFromTemplate <https://w3id.org/np/RAIDm7hi3CvE-zHIoAmTvlGuRWMip_KzjSznyzgkqGcTE> .
  
  sub:author-list rdf:_1 orcid:0000-0001-8149-5890;
    rdf:_2 orcid:0000-0003-0169-8159 .
  
  sub:sig npx:hasAlgorithm "RSA";
    npx:hasPublicKey "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQD4Wj537OijfOWVtsHMznuXKISqBhtGDQZfdO6pbb4hg9EHMcUFGTLbWaPrP783PHv8HMAAPjvEkHLaOHMIknqhaIa5236lfBO3r+ljVdYBElBcLvROmwG+ZGtmPNZf7lMhI15xf5TfoaSa84AFRd5J2EXekK6PhaFQhRm1IpSYtwIDAQAB";
    npx:hasSignature "puqQ5MEfcDPCj6EjZEobAYGCJ3FAdvQNf3VsZoCTGmyYqwSYNDioLQtAYbreSKrAo+tTUr0ZCUfOM1vlWP44B1e+kuD2OQyUWCVcLGz57WpX/BRBTf6pBuvkoEFRc9MJioecNriQk9ezORfuN+EMrdvVuDMvE3s3wl3DOMF7X5E=";
    npx:hasSignatureTarget this:;
    npx:signedBy orcid:0000-0002-1267-0234 .
}